SHRI SHANKARACHARYA INSTITUTE OF PROFESSIONAL MANAGEMENT AND TECHNOLOGY RAIPUR

SHRI SHANKARACHARYA INSTITUTE OF PROFESSONAL MANAGEMEN (livil Eng g)			
Class Test - II	Dession- July - Dec 2022	Month-February	
Semester- B.Tech-III	Subject- Mathematics-III		
Code - B000311(014)	Time Allowed: 2 hrs	Max Marks: 40	

Note: - 1) Attempt any TWO from unit IV
2) Attempt any THREE from unit V,Use atleast 4 decimal places for numerical solution
Q.
-

Questions

Marks

Levels of Bloom's taxonomy	CO

Unit - IV

Unit - V				
2.A	Solve $d y / d x=x+y, y(0)=1$ by Taylors series method. Hence find the value of y at $x=0.1$ and $x=0.2$	8	Evaluating	CO5
2.B	Solve the following differential equation by using modified Eulers method $\frac{d y}{d x}=\mathrm{x}+\mid \sqrt{y \mid}, \mathrm{y}(0)=1$ at $0 \leq \mathrm{x} \leq 0.4$ with $\mathrm{h}=0.2$	8	Evaluating	CO5
2.C	Apply Runge - Kutta method of fourth order to approximate the value of y at $x=0.2$ in steps of 0.1 if $\frac{d y}{d x}=x+y^{2}$ given that $y=1$ when $x=0$	8	Applying	CO5
2.D	Find the Laplace transform of a) $\left(e^{-t} \sin t\right) t$ b) $\left(\sqrt{t}-\frac{1}{\sqrt{t}}\right)^{3}$	8	Applying	CO 5

SSIPMT

RAIPUR
Shri Shankaracharya Institute of Professional Management \& Technology
Department of Civil Engineering

Class Test - II
Semester - $3^{\text {rd }}$
Time Allowed: 2 hrs

Month - February
Code - B020315 (020)
Max Marks: 40

Note: - Part (a) from each question is compulsory attempt any 2 from $b, c, \& d$ from each part.

Questions \quad Marks | Levels of |
| :---: |
| Bloom's |
| taxonomy |\quad cos

Part- I

\begin{tabular}{|c|c|c|c|c|}
\hline (a) \& \begin{tabular}{l}
1. Which of the following is not a vehicle in paints? \\
a. Linseed oil \\
b. Poppy oil \\
c. Turpentine oil \\
d. Tung oil \\
2. In fire proof paints, the main constituent is \\
a. Aluminum powder \\
b. Red lead \\
c. Copper powder \\
d. Asbestos Fibers
\end{tabular} \& [4] \& Understand \& CO4

CO 4

\hline (b) \& Discuss the classification of bitumen \& its Uses \& [8] \& Understand \& CO4

\hline (c) \& Explain the composition of oil paint \& their function \& [8] \& Understand \& CO4

\hline (d) \& Discuss in brief any one method of preservation of timber \& [8] \& Understand \& CO3

\hline \multicolumn{5}{|c|}{Part- II}

\hline (a) \& | 1. The grade of wood tar used for grouting purposes is |
| :--- |
| a. RT-1 |
| b. RT-2 |
| c. RT-4 |
| d. RT-5 |
| 2. Petroleum bitumen is obtained from |
| a. fractional distillation |
| b. extraction |
| c. atmospheric-vacuum distillation d. destructive distillation | \& [4] \& Understand \& CO 4

\hline (b) \& Which waste material can be used in building \& construction \& [8] \& Understand \& CO3

\hline (c) \& Draw a cross section of exogenous tree showing its different components differentiate between medullary rays \& cambium layer. \& [8] \& Understand \& CO 3

\hline (d) \& Write short notes on : Low cost material Ply wood Particle of wood \& [8] \& Understand \& CO 3

\hline
\end{tabular}

Department of Civil Engineering

Class Test - II

Session: July-December, 2022 Semester - $\mathbf{3}^{\text {rd }}$ (B-Tech)

Subject - IFM
Month -February
Time Allowed: 2 hrs.
Code-B000312 (020)
Max Marks: 40
Note: - In Part I \& II, Question A is compulsory and attempt any two from B, C \& D.

Part I

A.	Define the following Pitot tube, Orifice meter, Momentum Equation	[4]	Understand	CO3
B.	Derive Euler's equation of motion along a stream line for an ideal fluid stating clearly the assumption. Derive also Bernoulli's equation from Euler's equation.	[8]	Apply	CO3
C.	What is Venturimeter? Derive an expression for the discharge through a Venturimeter.	[8]	Apply	CO3
D.	250 litres $/ \mathrm{s}$ of water is flowing in a pipe having a diameter of 300 mm . If the pipe is bent by 135° (that is change from initial to final direction is 135°), find the magnitude and direction of the resultant force on the bend. The pressure of the water flowing is $39.24 \mathrm{~N} / \mathrm{cm} 2$.	[8]	Apply	CO3
Part II				
A.	Define the following Stream line, Velocity Potential function, Streak line	[4]	Understand	CO2
B.	The Stream function for a two-dimensional flow is given by $\psi=2 x y$, calculate the velocity at the point $\mathrm{P}(2,3)$. Find the velocity potential function.	[8]	Apply	CO2
C.	Obtain the condition for a trapezoidal channel with side slopes $2 \mathrm{H}: 1 \mathrm{~V}$ to be most efficient for a given area A . let b be its bed width.	[8]	Apply	CO4
D.	Find the bed slope of trapezoidal channel of bed width 6 m , depth of water 3 m and side slope of $3 \mathrm{H}: 4 \mathrm{~V}$, when the discharge through the channel is $30 \mathrm{~m}^{3} / \mathrm{s}$. Take $\mathrm{C}=70$	[8]	Understand	CO4

Shri Shankaracharya Institute of Professional Management \& Technology
 Department of Civil Engineering

SSIPMT
RAIPUR
Session- July-Dec, 2022 Month-February

Time Allowed: 2 hrs
Max Marks: 40
Note: - Question Q1 and Q2 are compulsory. Attempt any 2 questins from Q3, Q4 and Q5.

Q.N.		Questions	
PART-I			
Q1 Explain the term latitude and departure in traversing.			
Q3 Explain the method of Repetition for setting out horizontal			
Q4 Name the common methods of balancing the traverse. How error in a traverse balanced?			
Q5	Compute the length line	for a travers	A, D and E are poi
	Line	Length(m)	Bearing(degree)
	AB	90	85
	BC	150	32
	CD	?	350
	DE	182	18

PART-II

Q1 Define the degree of curvature.
Explain the elements of a simple circular curve. Give their relationship.
Q3 Calculate the necessary data for setting out a circular curve with the following data. The angle of intersection $=140^{\circ}$, chainage point of intersection $=1440 \mathrm{~m}$, and the radius of curve $=300 \mathrm{~m}$. The curve is to be set out by the offsets from the chord produce with pegs at every 20 m of through chainage.
Q4 Two tangents intersect at a chainage 3450 m .the angle of deflection is 50°. Calculate all data necessary for setting out a curve of radius 250 m by the deflection angle method (Rankin's method). The peg interval

[4]	Understanding	CO 5
[8]	Understanding	CO 5

[8] Applying

Shri Shankaracharya Institute of Professional Management \& Technology, Raipur Department of Civil Engineering

SSIPMT

Class Test - II Session: NOV - DEC, 2022 Month - FEBRUARY
Semester - $3^{\text {rd }} \quad$ Subject - Introduction to Solid Mechanics
Code - B020313(020)
Time Allowed: 2 hrs .
Max Marks: 40
Note: - Part A of each question is compulsory. Attempt any 2 from Part $B, C \& D$ in each question.

$\begin{aligned} & \mathrm{O} \\ & \mathrm{No} \end{aligned}$	Questions	Maris	Levels of Bloom 's taxemomy	cos
Part-I				
A.	Define point of contraflexure.	[4]	Understand	CO 3
B.	Find the reaction at the fixed end of the cantilever loaded as shown in Fig.4.18 (a). Draw also the S.F. and B.M. diagrams	[8]	Analyze	CO3
C.	A beam simply supported at ends and having cross-section as shown in Fig. below is loaded with a U.D.L., over whole of its span. If the beam is 8 m long, find the U.D.L. if maximum permissible bending stress in tension is limited to $30 \mathrm{MN} / \mathrm{m} 2$ and in compression to $45 \mathrm{MN} / \mathrm{m} 2$. What are the actual maximum bending stresses set up in the section?	[8]	Analyze	CO 3
D.	A hollow circular bar having outside diameter twice the inside diameter is used as a beam. From the bending moment diagram of the beam, it is found that the bar is subjected to a bending moment of 40 kNm . If the allowable bending stress in the beam is to be limited to $100 \mathrm{MN} / \mathrm{m} 2$, find the inside diameter of the bar.	[8]	Analyze	CO 3
Part-II				
A.	Write the assumption of Euler theory	[4]	Understand	CO 4

B.

A slender pin ended aluminium column 1.8 m long and of circular crosssection is to have an outside diameter of 50 mm . Calculate the necessary internal diameter to prevent failure by buckling if the actual load applied is 13.6 kN and the critical load applied is twice the actual load. Take E for aluminium as $70 \mathrm{GN} / \mathrm{m} 2$.
A 1.5 m long C.I. column has a circular cross-section of 5 cm diameter. One end of the column is fixed in direction and position and the other is free. Taking factor of safety as
C. 3, calculate the safe load, using: (i) Rankine-Gordon formula; take yield stress 560 $\mathrm{MN} / \mathrm{m} 2$, and $1 \mathrm{a}=1600$ for pinned ends. (ii) Euler's formula. Young's modulus for C.I. $=120 \mathrm{GN} / \mathrm{m} 2$
Compare the crippling loads given by Rankine's and Euler's formulae for tubular strut 2.25 m long having outer and inner diameters of 37.5 mm and 32.5 mm loaded through D. pin-joint at both ends. Take: Yield stress as $315 \mathrm{MN} / \mathrm{m} 2 ;, 12 \mathrm{a}=$ and $\mathrm{E}=200 \mathrm{GN} / \mathrm{m}$. 7500 If elastic limit for the material is taken as $200 \mathrm{MN} / \mathrm{m} 2$, then for what length of the strut does the Euler formula cease to apply?
[8]
Analyze CO 4
[8]
[8]
Analyze CO 4 *多"

