1		DE	PARTME	NT OF M	IATHEM	ATICS	civil e		
C	Class Test – II Session- July – Dec 2022						Month	-February	
Seme	ester- B.Tech-III		Subject- M	lathemat	ics-III				
Code	le – B000311(014) Time Allowed: 2 hrs			Max Marks: 40					
Note: - 2	 Attempt any TW Attempt any TH 	O from uni REE from u	t IV nit V ,Use	atleast 4	decimal p	places for 1	numerical		
Q. No		(Questions				Marks	Levels of Bloom's taxonomy	со
				Unit –]	IV				
1.A	Using Lagrange's	interpolation 5 7 150 39	7 11	1	3 1	7 02	8	Applying	CO4
1.B	Using Stirling's f θ 0 5 tan 0 0.087 θ	10	15 0.2679	20 0.3640	25 0.4663	30 0.5774	8	Applying	CO4
1.C	Using Newton's $x = 4$ f(x) = 48	5	rence form 7 10 294 90) 11	13		8	Applying	CO

1000		Unit – V			
	2.A	Solve $dy/dx = x+y$, $y(0) = 1$ by Taylors series method. Hence find the value of y at $x = 0.1$ and $x = 0.2$	8	Evaluating	CO5
	2.B	Solve the following differential equation by using modified Eulers method $\frac{dy}{dx} = x + \sqrt{y} $, $y(0) = 1$ at $0 \le x \le 0.4$ with $h = 0.2$	8	Evaluating	CO5
	2.C	Apply Runge – Kutta method of fourth order to approximate the value of y at x = 0.2 in steps of 0.1 if $\frac{dy}{dx} = x + y^2$ given that y = 1 when x = 0	8	Applying	CO5
	2.D	Find the Laplace transform of a) $(e^{-t} \operatorname{sint}) \operatorname{t}$ b) $(\sqrt{t} - \frac{1}{\sqrt{t}})^3$	8	Applying	CO5

Shri Shankaracharya Institute of Professional Management & Technology Department of Civil Engineering

Session: July – Dec, 2022

Month – February Code – B020315 (020) Max Marks: 40

Semester – 3rd Time Allowed: 2 hrs

Class Test – II

Subject – Building Material,

Note: - Part (a) from each question is compulsory attempt any 2 from b, c, & d from each part.

Q. No.	Questions		Levels of Bloom's taxonomy	COs
	Part- I			
(a)	 Which of the following is not a vehicle in paints? a. Linseed oil b. Poppy oil c. Turpentine oil d. Tung oil 2. In fire proof paints, the main constituent is a. Aluminum powder b. Red lead c. Copper powder d. Asbestos Fibers 	[4]	Understand	CO4
(b)	c. Copper powder d. Asbestos Fibers Discuss the classification of bitumen & its Uses	[8]	Understand	CO4
(c)	Explain the composition of oil paint & their function	[8]	Understand	CO4
(d)	Discuss in brief any one method of preservation of timber	[8]	Understand	CO3
	Part- II			
(a)	 The grade of wood tar used for grouting purposes is RT-1 RT-2 RT-4 RT-5 Petroleum bitumen is obtained from fractional distillation extraction atmospheric-vacuum distillation destructive distillation 	[4]	Understand	CO4
(b)	Which waste material can be used in building & construction	[8]	Understand	CO3
(c)	Draw a cross section of exogenous tree showing its different components differentiate between medullary rays & cambium layer.	[8]	Understand	CO3
(d)	Write short notes on : Low cost material	[8]	Understand	CO:

Shri Shankaracharya Institute of Professional Management & Technology, Raipur

Department of Civil Engineering

Class Test – II

SSIPMT

Session: July-December, 2022 Semester – 3rd (B-Tech) Time Allowed: 2 hrs.

Subject – IFM

Month –February Code – B000312 (020) Max Marks: 40

Note: - In Part I & II, Question A is compulsory and attempt any two from B, C & D.

Q. No.	Questions	Marks	Levels of Bloom's taxonomy	CO' 8
	Part I			
A.	Define the following Pitot tube, Orifice meter, Momentum Equation	[4]	Understand	CO3
В.	Derive Euler's equation of motion along a stream line for an ideal fluid stating clearly the assumption. Derive also Bernoulli's equation from Euler's equation.	[8]	Apply	CO3
с.	What is Venturimeter? Derive an expression for the discharge through a Venturimeter.	[8]	Apply	CO3
D.	250 litres /s of water is flowing in a pipe having a diameter of 300mm. If the pipe is bent by 135° (that is change from initial to final direction is 135°), find the magnitude and direction of the resultant force on the bend. The pressure of the water flowing is 39.24 N/cm2.	[8]	Apply	CO3
	Part II			10 Million (10) 1 Contraction (10)
А.	Define the following Stream line, Velocity Potential function, Streak line	[4]	Understand	CO2
В.	The Stream function for a two-dimensional flow is given by $\psi = 2xy$ calculate the velocity at the point P (2, 3). Find the velocity potential function.	, ¹ [8]	Apply	CO2
C.	Obtain the condition for a trapezoidal channel with side slopes 2H: 1V to be most efficient for a given area A. let b be its bed width.	[8]	Apply	CO4
D.	Find the bed slope of trapezoidal channel of bed width 6m, depth of water 3m and side slope of $3H:4V$, when the discharge through the channel is $30m^3/s$. Take C = 70	[8]	Understand	CO4

Sector Constraints	Strengton of States	Shri Sł		Institute of Profess Department of Civil			& lecnnology	
SSI		<u>Ol</u>		Session- July-D			th-February	
Berthere .	man		ss Test – II n- 3 rd Subj	ect- Plane Surveyin			20314(020)	
	T '			ect- Flane Surveyin	ig - 1 CC		x Marks: 40	
		Allowed:		ompulsory. Attempt an	w ? auestins f			
Q.N.	Ivote: - Ç	juestion Q	Question		<i>y 2 questins j</i>	Marks	Levels of Bloom's taxonomy	СО
				PART-I				
01	Explain the te	rm latitud	le and departure	e in traversing.		[4]	Understanding	CO4
				etting out horizontal	angle.	[8]	Understanding	CO3
Q4	Name the cor error in a trav	nmon me	thods of balanc	ing the traverse. How	w is a closing	; [8]	Understanding	CO4
Q5	Compute the length CD for a traverse if A, D and E are point on straight line						Applying	CO4
		Line	Length(m)	Bearing(degree)				
		AB	90	85				
		BC	150	32				
		CD	?	350				
		DE	182	18				
				PART-II				1
Q1	Define the de	egree of c	urvature.	2		[4]	Understanding	CO
Q2	Explain the relationship.		ts of a simp	ole circular curve.	Give their	[8]	Understanding	CO
Q3	Calculate the following data intersection	e necessa ata. The = 1440m y the off	angle of interse , and the radius sets from the c	ting out a circular curve $= 140^{\circ}$, chain to f curve $= 300$ m. The thord produce with produc	hage point of he curve is to	f [8]	Applying	CO
Q4	Two tangent 50 ⁰ . Calcula	ts intersected all data	et at a chainage a necessary for s gle method (Ra	e 3450m.the angle of setting out a curve of nkin's method). The	f radius 250m	۱	Applying	со

.

В.	A slender pin ended aluminium column 1.8 m long and of circular crosssection is to have an outside diameter of 50 mm. Calculate the necessary internal diameter to prevent failure by buckling if the actual load applied is 13.6 kN and the critical load applied is twice the actual load. Take E for aluminium as 70 GN/m2.	[8]	Analyze	CO4
C.	A 1.5 m long C.I. column has a circular cross-section of 5 cm diameter. One end of the column is fixed in direction and position and the other is free. Taking factor of safety as 3, calculate the safe load, using: (i) Rankine-Gordon formula; take yield stress 560 MN/m2, and 1 a = 1600 for pinned ends. (ii) Euler's formula. Young's modulus for C.I. = 120 GN/m2	[8]	Analyze	CO4
D.	Compare the crippling loads given by Rankine's and Euler's formulae for tubular strut 2.25 m long having outer and inner diameters of 37.5 mm and 32.5 mm loaded through pin-joint at both ends. Take: Yield stress as 315 MN/m2 ; $1.2 \text{ a} = \text{and } \text{E} = 200 \text{ GN/m}$. 7500 If elastic limit for the material is taken as 200 MN/m2, then for what length of the strut does the Euler formula cease to apply?	[8]	Analyze	CO4

09/02/23/CM//ISM/S-I